Racial Disparities in Cycling: Associations Between Bicycle Accidents and the Urban Built Environment in the City of Sacramento

Presenter: Peyton Moran
Research Advisor: Dr. Mario Moran

Introduction

- Cycling provides a means for sustainable transport, healthy lifestyles, and compact communities for individuals across the globe.
- Historically, transportation inequity and transportation injustices have been considerably linked to racial minorities and low income communities.
- Racial minorities are involved in bicycle accidents at a higher rate when compared to other races and the national population at large.
- Although walking and cycling occur more frequently in low income communities, safe infrastructure is typically constructed in higher income communities.
- The dependent variable of this analysis was bicycle accidents, while the independent variable included the socioeconomic characteristics of the census tracts.
- This model assesses if there are any socioeconomic and racial disparity of bicycle accidents in Sacramento.

Research Questions

- What is the frequency, proportion, and geographic pattern of total bicycle accidents, as well as those among each race being observed?
- Which independent variables (median household income, population of race(s), population density, vehicular availability, etc.) were most strongly associated with bicycle accidents in Sacramento, California?

Results & Analysis

American Community Survey - Adjusted R-Squared Results

<table>
<thead>
<tr>
<th>Significant Variables</th>
<th>Adjusted R-Squared</th>
<th>VIF Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment Density***</td>
<td>0.37</td>
<td>1.9</td>
</tr>
<tr>
<td>Vehicular Availability (0)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicular Availability (1)**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

U.S. Census Bureau - Adjusted R-Squared Results

<table>
<thead>
<tr>
<th>Significant Variables</th>
<th>Adjusted R-Squared</th>
<th>VIF Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Density***</td>
<td>0.26</td>
<td>19.75</td>
</tr>
<tr>
<td>Median Disposable Income**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic Population***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian Population***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Findings

- The number of bicycle accidents were directly proportionate to the population of the race being observed.
- In every scenario, the number of accidents decreased as the income of the census tract in which it occurred increased.
- In the regression model, the following increase in variables typically meant an increase in bicycle accidents: employment density, vehicular availability (0,1), and population density.
- In the regression model, a decrease in the following variables typically meant an increase in bicycle accidents: vehicular availability (2), median disposable income, Hispanic population, and Asian population.

Future Research

- The next phase of my research is to perform a more through statistical analysis. This will include a comprehensive database of the socioeconomic and sociodemographic variables. In addition to this, it is my hope to model and compare results for numerous cities across the United States.

Acknowledgements

Research Advisor: Dr. Mario Moran

Future Research

Works Cited

Methodology

- In order to adequately measure and test racial disparities in cycling activity and safety, two separate models were used.
- The first model tested the frequency, proportion, and geographic pattern of the total bicycle accidents, as well as the number of accidents among each race.
- Each independent variable was grouped by quartile breaks, in order to assess which percentile the census tract fell within.
- The bicycle accidents were spatially joined to the census tracts in which they occurred.
- The second model performed an exploratory regression model to identify which independent variables were most strongly associated with bicycle accidents.
- The regression model was performed for two separate datasets: United States Census Bureau and American Community Survey.
- For each regression, the best results were chosen, based on a low Max Variation Inflation Factor and high Adjusted R-Squared value.
- Significant variables were set to a 95% confidence interval.

Future Research

Acknowledgements

A sincere thank you to my faculty mentor, Dr. Mario Moran, for his guidance and assistance in facilitating this research. I would also like to thank the Department of Geography, as well as the College of Arts and Sciences for their continual support and encouragement throughout my educational endeavors.

Works Cited

